

Mobility Research at TARDEC

Dr. P. Jayakumar, S. Arepally Analytics

Dr. D. Gorsich Chief Scientist

10 March 2015

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comment arters Services, Directorate for Inf	ts regarding this burden estimate formation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	nis collection of information, Highway, Suite 1204, Arlington				
1. REPORT DATE 10 MAR 2015		3. DATES COVERED 00-00-2015 to 00-00-2015							
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER						
Mobility Research		5b. GRANT NUMBER							
		5c. PROGRAM ELEMENT NUMBER							
6. AUTHOR(S)				5d. PROJECT NUMBER					
					5e. TASK NUMBER				
				5f. WORK UNIT NUMBER					
	ZATION NAME(S) AND AE M-TARDEC,6501 E 18397-5000			8. PERFORMING REPORT NUMB	G ORGANIZATION ER				
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)					
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)						
12. DISTRIBUTION/AVAII Approved for publ	LABILITY STATEMENT ic release; distributi	ion unlimited							
13. SUPPLEMENTARY NO Presented at ARC									
14. ABSTRACT See Report									
15. SUBJECT TERMS									
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF	18. NUMBER	19a. NAME OF				
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 12	RESPONSIBLE PERSON				

Report Documentation Page

Form Approved OMB No. 0704-0188

Outline

- Roadmaps for
 - Off-road mobility
 - Intelligent mobility*
 - Automotive Research Center (ARC)*
- Research activities at TARDEC
 - Tire, track, and soil modeling
 - Numerical methods and scalability
 - Next-Generation NATO Reference Mobility Model (NRMM) Team
 - Autonomy-enabled UGV mobility*
- Funding
 - No CREATE-GV funding used
 - Very limited TARDEC funding
 - Leveraged funding through SBIR, STTR, RIF, ARC, etc.
- Benefits
 - Feeds into CREATE-GV and ERS
 e.g. Chrono software transitioned to CREATE-GV as vehicle dynamics engine

^{*}Time permitting

Mobility Research Roadmap

Tire - Soil Simulation, A Flexible Multibody Dynamics Approach

ANCF shell element

New ANCF shell element Fiber-reinforced composite rubber Validation and benchmark

ANCF tire model

ANCF structural tire model Experimental validation

ANCF tire/soil interaction

New ANCF continuum soil model ANCF tire/soil interaction model Validation and benchmark

High performance computing

GPU implementation Integration with soil model Integration into full vehicle simulation

Demonstration of technology

Tire sinkage & drawbar pull Cornering performance Wheeled-vehicle demo

<u>Purpose</u>

Develop physics-based high-fidelity tire/soil interaction simulation capabilities using the absolute nodal coordinate formulation (ANCF) and integrate into the high performance computing (HPC) off-road mobility simulation framework with deformable terrains.

Leap-ahead/Disruptive Products/Results

- Novel physics-based high-fidelity deformable tire models based on advanced flexible multibody dynamics formulations – ANCF tire model
- Accurate and efficient ANCF deformable terrain model for off-road mobility simulation
- High-fidelity physics-based ANCF tire/soil interaction simulation capabilities fully integrated into HPC off-road mobility simulation framework
- Robust and efficient GPU computing algorithms for the ANCF tire/soil interaction simulation

Payoff

Novel physics-based HPC modeling and simulation capabilities for tire/soil interaction using advanced flexible multibody dynamics formulations. Enable demonstration of mobility capability that includes

- · Maneuverability of military ground vehicles on deformable terrains
- Mission-specific power requirement
- · Virtual prototyping and design analysis for improved mobility

Transition Milestones

- Deliver HPC ANCF tire/soil interaction simulation codes for ground vehicle mobility [December 2016]
- Deliver ANCF tire and ANCF soil models for HPC off-road mobility simulation [December 2016]
- Transfer technology to third-party software and industrial partners [ongoing]

POC: Dr. Paramsothy Jayakumar, TARDEC Dr. Hirovuki Sugiyama. University of Iowa

Track - Soil Modeling and Simulation Using ANCF Finite Element

<u>Purpose</u>

Develop new generation of MBS software technology for vehicle mobility based on new geometry concepts and numerical approaches

Leap-ahead/Disruptive Products/Results

- High-fidelity vehicle models with significant details that cannot be captured using existing MBS and FE tools.
- Effective integration of FE and MBS simulation capabilities in one tool
- Building the foundation for integrating CAD, FE, and MBS codes into one software
- Ability to develop unique and new continuum-based small and large deformation models for soil, tires, leaf springs, liquid sloshing,...

Payoff

New generation of MBS software technology that will allow for efficient virtual prototyping and for eventually integrating geometry and analysis. The results are:

- Integration of FE and MBS software for vehicle mobility
- Replacing 30-year old formulation MBS software
- Advanced tools for vehicle mobility which will reduce the exorbitant maintenance cost.

Transition Milestones

- A copy of the Sigma/Sams software was sent to TARDEC in order to obtain feedback on the developments [January 2015]
- Develop toolkits for different vehicle types to allow the user to easily build complex vehicle models [December 2015]
- Work on the code packaging and commercialization [ongoing]
- Work with TARDEC engineers and industry to ensure effective technology transfer [ongoing]

POC: Dr. Paramsothy Jayakumar, TARDEC

Dr. Ahmed Shabana, Univ. of Illinois at Chicago / Computational Dynamics Inc.

HPC-Enabled Modeling and Numerical Methods for Vehicle Mobility Analysis

Purpose

Develop scalable, physics-based HPC modeling, simulation, and visualization capability for analysis of ground vehicle mobility on deformable terrain

<u>Leap-ahead/Disruptive Products/Results</u>

- High-fidelity wheeled and tracked vehicle modeling with rigid and deformable components
- · High-fidelity, physics-based deformable tire models
- Robust and scalable numerical methods for solving billion-body frictional contact problems
- Very large scale simulations of multi-physics vehicle mobility scenarios on massively parallel architectures

Payoff

Unique capability for scalable, efficient, and accurate multi-physics, multidiscipline HPC simulation of ground vehicles and terrain-vehicle interaction. Enable maneuverability prediction studies at unprecedented levels of fidelity:

- Terrain trafficability for various soil conditions
- Mission-specific power requirement analysis
- Virtual prototyping and design analysis for improved mobility

Transition Milestones

- Deliver an open source HPC computational dynamics capability for ground vehicle mobility scalable to tens of thousands of nodes [August 2016]
- Deliver a collection of wheeled and tracked vehicle models for multiphysics simulations of mobility over deformable terrain and fording analysis [May 2016]
- Organize RIF-centric consortium meetings and hands-on tutorials [biannual, May & December]
- Transfer of technology to third-party software and industrial partners [ongoing]

POC: Dr. Paramsothy Jayakumar, TARDEC

Dr. Dan Negrut, University of Wisconsin-Madison

Next-Generation NATO Reference Mobility Model Team

- Goal
 - Physics based simulation, not empirical as current NRMM
 - Address contemporary vehicle design technologies
 - Develop specifications that promote standardization, integration, modular interoperability, portability, expansion, verification and validation
 - Tool choices meeting the standards can be government, commercial, open source, etc.
 - NATO level engagement

Nations participating: 15
 Number of members: 41

Lead Nation: USA

Co-Chair: Dr. Paramsothy Jayakumar (USA), Dr. Michael Hoenlinger (Germany)

AVT Panel Mentor: Dr. David Gorsich, USA

Monthly teleconferences and bi-annual NATO meetings held

•	7 Themes	Lead	Organization
	1: Requirements 2: Methodology 3: Stochastics 4: Intelligent Vehicle 5: Tool Choices 6: Input Data & Output Metrics 7: Benchmarking	Jody Priddy Dr. Mike McCullough Dr. Karl lagnemma Dr. Abhi Jain Henry Hodges Brian Wojtysiak /James Ngan Rainer Gericke	ERDC BAE MIT NASA JPL NATC AMSAA Germany

NextGen NRMM Methodology Development Vision

	Model Fidelity and Resolution									
	Empirical –	Empirical -	Open Archite	rchitecture Model NORMMS						
Model Component	Current NRMM	Enhanced	Threshold (Semi-Analytical)	Objective (Analytical)						
Mobility Mapping	NRMM Operational Module	NRMM Operational Module	Modified NRMM Operational Module	Modular, Expandable, Documented, Verified, Mobility Mapper with Long Term NATO CM support						
Off-Road Mobility	NRMM	NRMM+	Bekker/Wong Terramechanics	FEM / DEM / MFM						
Vehicle Dynamics	VEHDYN (2D)	3D MBD	Ftire, Multilink track	Integrated deformable, dynamic terrain						
Intelligent Vehicle	Constant speed	Variable speed	Closed loop 3D path following with sensors	Autonomy with analytical sensor-terrain interaction in feature rich environments						
Compute Platform	Desktop	Desktop	Multi-Threaded Desktop	HPC						

Terrain Data

H/W

NORMMS Specs

LEGEND

NextGen NRMM Proof of Concept

		<u> </u>											
#	Task Month	1	2	3	4	5	6	7	8	9	10	11	12
	Familiarization with NRMM (TARDEC												
1	and ASA)												
П	Calibrate the Soil Model (ASA and												
2	TARDEC)												
	Create the HMMWV Vehicle model												
3	(TARDEC)												
П	Create a Terrain Map Converter Program												
4	(ASA)												
П	DIS Software Installation on the HPC												
5	(ASA)												
	Create a Program to Automate running DIS												
6	on the HPC (ASA)												
П	Run the NRMM simulations on the HPC												
7	(TARDEC)												
8	Develop a Program to Automate Post-												
	Processing of the Simulation Results (ASA)												
9	Simulation verification (TARDEC)												

FY15

Purpose

Develop a NRMM-like Mobility Map using a Coupled Finite Element Vehicle Model, a Discrete Element Soil Model, and an HPC System in support of the NATO Exploratory Team on NextGen NRMM Development.

Leap-ahead/Disruptive Products/Results

- Explicit parallel solver with fully-coupled Flexible multibody dynamics (FMBD), discrete element method (DEM). and smoothed particle hydrodynamics (SPH).
- General elasto-visco-plastic-frictional DEM particle force model for modeling cohesive and non-cohesive soils.

POC: Dr. Paramsothy Jayakumar, TARDEC

Dr. Tamer Wasfy, Advanced Science and Automation Corp.

Intelligent Vehicle Mobility Simulation Roadmap

Autonomy-Enabled Unmanned Ground Vehicle Mobility Simulation

Autonomy Algorithm (UMich)

Powertrain Modeling
Tire/Soft Soil Modeling
Variable latency modeling
Algorithm Sensitivity Analysis
Code optimization (w/ARL)
Plant model fidelity study
Experimental testing

Cognitive Modeling (Alion)

Driver Model integration and test
Validation of model to test data
Simulated teleoperation runs w/latency
Driver Distraction Modeling
Higher level cognitive function study

Shared Control Modeling (Alion)

Integration of blended control algorithm
Testing of blended algorithm
Alternative algorithm study

Simulation Environment

PL) Terramechanics updates
Autonomous algorithm integration
Cognitive Model integration
Shared control implementation
Scenario testing
NextGen NRMM Mobility Analysis

Purpose

Develop a simulation capability for analyzing the effect of autonomy on unmanned ground vehicle (UGV) mobility.

Leap-ahead/Disruptive Products/Results

- Realistic simulation of human teleoperation or supervisory control through the incorporation of human cognitive models
- Development of vehicle dynamics-aware autonomous algorithms capable of controlling large vehicles at high speeds
- Integration of shared control algorithms to allow for the simulation of a full range of autonomy levels between full teleoperation and full autonomy.
- An integrated simulation environment incorporating high fidelity vehicle dynamics.

Payoff

Unique capability for analyzing semi-autonomous unmanned ground vehicle mobility

- Cost effective simulation of semi-autonomous control methods without need for expensive / complicated human testing
- Enables autonomy evaluation of large Army vehicles under a variety of scenarios
- · Virtual prototyping and design analysis

Transition Milestones

 Deliver integrated simulation environment capable of modeling and analyzing the mobility of a UGV over a full range of semi-autonomous control options (FY16).

POC: Dr. Paramsothy Jayakumar, TARDEC
Dr. James Poplawski, Alion

Dr. Abhi Jain, NASA JPL

Dr. Tulga Ersal, University of Michigan

Automotive Research Center Thrust Area 1 Roadmap

Project Ensemble

- 1. parallel; gpu; multi-scale; multi-physics; co-simulation; integration; explicit-implicit-hybrid; software; molecular dyn; efficiency o(logn); Cartesian-recursive-natural; contact-impact-friction-railway; stability; robustness; theoretical; computational methods; visualization;
- 5. tire and track modeling; terramechanics; roll over; active vehicle control; nonlinear fmbd; biomechanics; uncertainty; probabilistic design; sensitivities; optimization; mfo; parameter id; model reduction;

3. small/large ugv; terramechanics; scalability; autonomy-integrated sensors/controls/actuators; dev requirements; events/scenarios; real-time; high fidelity; m&s software platform; validation testing; reliability; space research - rovers;

4. power electronics modeling; optimization and control of small/large ugv power systems; advanced propulsion systems; high degree of freedom modeling and control; requirements development; trade study methodology including optimization; inclusive energy analysis and optimization;

- 2. terrain model; soil model; running gear model; physics based; fe based; grid based; statistical models; soil testing; soil database; mobility; light/heavy vehicle; scalability;
- 6. automated m&s process; automated robustness investigation; archival; pre-post indep. of solver; benchmark by plug & play; integrated cad-fe-mbd; generalized-minimal-natural coord; symbolicnumeric; serial-parallel; realtime-offline; built-in verification-validation; industry-std; research implementation ready; multi-fidelity m&s; lifecycle mgt;

UNCLASSIFIED

P. Jayakumar and D. Rizzo 04 Sep 2012